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Abstract. Finite cluster expansions are described in terms of generalised Mobius 
functions. This description is used to formalise techniques for obtaining series expansions 
for lattice models in terms of rectangular graphs. In particular new expressions are given 
for boundary corrections for finite systems. 

1. Introduction 

Within the last two years there have been several papers showing how to obtain series 
expansions for lattice statistics problems defined on infinite square lattices in terms of 
rectangular subgraphs of the square lattice. De Neef (1975) applied one such method 
to obtaining series expansions for the Potts model. This approach was formalised by 
de Neef and Enting (1977). Enting and Baxter (1977) described a related expansion 
technique which was suggested by variational approximations used by Baxter (1968) 
and which turned out to be based on combinatorial relations equivalent to those used 
by Hijmans and de Boer (1955) for closed form approximations. Enting (1977) has 
investigated these rectangular graph expansions from the point of view of compu- 
tational efficiency and shown that is some cases the rectangular graph expansions can 
be proved to be more efficient than conventional expansion techniques. Kim and 
Enting (1978) have applied the de Neef formalism to deriving series expansions for 
the infinite limit of chromatic polynomials. 

The present paper uses a generalisation of Mobius functions (Rota 1964, Wilson 
1971) to demonstrate the unity of the combinatorial results underlying the two 
methods of Enting and Baxter, and de Neef. A number of new results are presented 
including explicit general inverses for the T matrices caB used by de Neef and Enting 
(1977) and thence explicit general expressions for the expansion coefficients. In 
addition it is shown that the rectangular lattice expansions can be used to obtain 
expressions for the boundary contributions for finite systems. These boundary 
contributions are of interest in physical problems because of effects such as grain size 
in crystals and the possibility of directly observing surface effects (Watson 1972). 
Boundary effects in the Ising model and related models are also of interest to 
statisticians since the Ising model is equivalent to a Markov random-field defined on 
binary variables (see for example Besag 1974, Pickard 1976). Since the boundary 
corrections to correlation functions will always be of the same order of magnitude as 
the confidence intervals associated with finite size sampling errors, (Martin-Lof 1973, 
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5 64 I G Enting 

Pickard 1977) such confidence intervals will be meaningless unless expressions for 
boundary contributions can be obtained. 

In 0 2 the Mobius functions used in combinatorial analysis are generalised in a 
manner appropriate to series expansion techniques. This generalisation is applied to 
rectangular graph expansions in 0 3 and the appropriate Mobius functions are given. 
In 0 4 these generalised Mobius functions are summed to give expressions for series 
expansions for both the de Neef and the Enting and Baxter formalisms and in a form 
which explicitly gives boundary corrections. 

2. Generalisations of Mobius functions for series expansions 

In combinatorial analysis, Mobius functions are defined as elements of incidence 
algebras over partially ordered sets, X (Rota 1964, Wilson 1971). In the series 
expansion formalisms the sets involved will be sets of graphs with the subgraph 
relation as the ordering relation. Multiplication in an incidence algebra is defined as 
an inner product: 

If one defines the incidence function c(x ,  y )  by 

x s y  
otherwise 

then its inverse, p(x, y )  is defined so that 

X = Z  

otherwise, 

The Mobius function p(x, y )  can be used to transform sums over sets so that if 

fb)= c h(Y)  
Y a x  

then 

The application series expansions arise if f ( y )  is a function such as the free energy of a 
particular model defined on graph g and which can be expressed as 

fk>= c h k ‘ )  
d==g 

and which for large graphs G can be usefully approximated by 

f(G)= c h k ’ ) .  
g’==g” 

Then f(G) can be expressed, approximately, in terms of the f(g), g s g ” .  This 
formalism is essentially that of Domb (1974) and it reqiiires that the set of graphs be 
labelled so that any graph occurs at most once as a subgraph of a given graph. 

In terms of unlabelled graphs, 
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where t ( g ’ , g )  is the number of ways that g’ occurs as a subgraph of g, and thus 
corresponds to the T matrix used in lattice statistics and is a generalisation of the 
incidence function [ ( x ,  y). The inverse of t, &g’) can thus be regarded as a 
generalisation of the Mobius function, and we write: 

These equations can be generalised by replacing g” by a set r of cutoff graphs so that 
all the sums are over those graphs which are subgraphs of at least one graph in r. A 
typical set r would be the set of all graphs of m lines, in many models, would lead to 
an approximation of the form (2.5) which was correct to order m in an appropriate 
expansion variable. 

3. Generalised Mobius functions for rectangles 

To apply the formalism of the preceding section we have to select a function f and find 
a set of graphs for which the h functions lead to a useful approximation. A typical 
application is to have f as the free energy for some lattice model such as the Potts 
model and to have g as the set of connected subgraphs of some infinite lattice L which 
is defined as the limit of a sequence of finite lattices Ln. The equations of the previous 
section become 

f =  lim f (Ln)  
n+oD 

= Iim h(g’)t(g’, Ln) 
n+x B p  

It has been shown (Hijmans and de Boer 1955, de Neef 1975 and de Neef and 
Enting 1977) that if L is the square lattice and if a function f has an expansion in terms 
of the f(g) where the graphs g are all connected, then f has an expansion in terms of 
the f ( r )  where the graph r is a rectangle. The rectangular graphs are denoted [m, n ]  
and correspond to the set of n X m vertices indexed (i ,  j ) ,  1 C i S m, i d j d n with 
edges connecting ( i ,  j )  to ( i  + 1 ,  j )  and ( i ,  j + 1 ) .  

For these rectangular graphs, the T matrix is 

(m - i  + l ) ( n  - j +  1) i f i s m a n d j s n  
otherwise. (3.2) 

The inverse of this T matrix is given by the generalised Mobius function 

4 i , i I ,  [m, n l ) =  rl(i, m)r)(i, n )  (3.3) 
where 

if i = m or if i +2  = m and m > 2 
if i + l  = m and m > 1 q ( i ,  m)= -2 (b otherwise. 

(3.4) 
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This result is easily verified by taking the product of the v and t functions. Equations 
(3.4) gives 

h( [ i ,  j ] )  =f([i, j ] ) - 2 f ( [ i ,  i- Il)+f([i, i- 21)- 2 f ( [ i  - 1, il)+4f([i - 1, i- 11) 

-2 f ( [ i  - I, j-2])+f([i -2, j])-2f([i -2, j -  l])+f([i -2, j-21). (3.5) 

4. Applications 

To obtain series expansions for boundary effects, consider the expansions for the 
graph [M, NI which take the form 

f([M NI)= c f ( [ ~ , j I ) v ( [ i , j l ,  [m, nl)t([m, nl,  CM, NI). (4.1) 
[i,il.[m,nl=X 

The non-zero elements of the T matrix take the values 

( M -  m + 1)(N - n + 1) = MN -N(m - 1)-M(n - 1)  + (m - l)(n - 1)  (4.2) 

so f ( [M,  NI)  will have a ‘bulk’ contribution from the MN term, ‘edge’ contributions 
from the N ( m  - 1) and M(n - 1) terms and a ‘corner’ contribution from the remaining 
terms. 

There are two choices for the cutoff set r which we consider: A ( k )  the set used by 
Enting and Baxter (1977) and B ( k )  the set used by de Neef (1975). 

A ( k ) = { [ k ,  k l l  (4.3) 

R ( k ) = { [ i , j ] :  i + j = k } .  (4.4) 

There are two basic sums over the T ( i ,  n )  which we have to consider when using set 
A(k):  

Substituting these sums into (4.1) with cutoff set A(k) ,  the contribution of f ( [ i ,  j]) to 
f ( [ M ,  NI) is given by 

MN(&k - &.k-l)(8jk -8j,&-l)-M((k - 1)&k -k&,k- l ) (& -8 j .k -1 )  

-N(8i& -8i,&-l)((k - 1)8j& - k8jk)+ ( (k  - 1)8i& - k 8 i . k - 1 )  

x ( ( k  - 1)& - k8j.k-1) .  (4.7) 

As long as the system is isotropic so that f ( [ i ,  j ] ) = f ( [ j ,  i]) the factors that multiply M 
and N will be equivalent so that there will be an edge contribution which for any M, N 
is proportional to ( M + N ) .  Of course all of the discussion above assumes M a k ,  
N 2 kc For small values of M or N f ( [M,  NI)  can be calculated directly using the 
transfer matrices used to obtain the f([i, j]) and so series expansions for f([M, NI)  are 
irrelevant. The bulk contribution in (4.7) reproduces the expression given by Enting 
and Baxter (1977) but the other expressions are apparently new. 
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When the cutoff set B ( k )  is used, the sums over the q functions cannot be 
performed independently. We have to consider the sums 

m = l  n = l  

m = l  

m = l  n = l  

k-1 
= 1 m q  (i, m ) [ ( k  - m)sj ,k-m - ( k  - m + I )a j ,k -m- l ]  

= j(k - j )v  (i, k - j ) -  ( k  - j  - l)(j + 2)q(i ,  k - j  - 1) 

= i j $ , k - j - ( 3 i j + 2 i + 2 j ) S i , k - j - l + ( 3 i j + 4 i  +4j+4)Si.k-j-2 

m = 1  

- ( j + 2 ) ( i  +2)8i .k- j -S,  (4.10) 

Substituting these sums into (4.1) with B ( k )  used as the cutoff set G shows that the 
contribution of f([i, j]) to f ( [ M ,  N I )  is given by 

MN(6i.k-j -3Si,k-j-1 f 36i,k-j-2-6i,k-j-3) 

+N((1 - i )&,k - j  + (3 i - l )&,k - j -1 - (3 i  + I)&,k-j-Z+(i f l)&,k-j-3) 

+ M((  1 -j )Si ,k- j  + (33 - 1 )&,k- j-1- (3j + 1)ai.k-j-z + ( j  + l)&,k-j-3) 

+(i- 1 ) ( j - l ) & k - f + ( 1  + i + j - 3 i j ) S i . k - j - l + ( 3 i j + i + j - 1 ) S i . ~ - j - l  

- ( i  + l)(j+ 1)Sl,k-j-3. (4.11) 

The ‘bulk’ term had been obtained in particular cases by de Neef (1975), de Neef and 
Enting (1977) and Kim and Enting (1978). The general solution had not been noticed 
because the contributions of f([i, j]) and f([j, i]) were combined when possible. Again 
the expressions for boundary effects are apparently new. 

5. Conclusions 

The expansions in the previous section have demonstrated the common combinatorial 
results which connect the expansion technique of de Neef (1975) to that of Enting and 
Baxter (1977). In addition the formalisms have been generalised to show how 
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boundary terms can be expressed in terms of the same functions which are used to 
calculate bulk contributions. The fact that these expressions include the corner 
corrections should make them useful for the statistical analysis of spatial data when 
comparatively small-sized regions are being investigated. The physical significance of 
boundary effects has been reviewed by Watson (1972) but most of the emphasis has 
been on fairly large systems for which boundary effects are significant only in the 
critical region. 

In conclusion, it should be noted that in actual applications of the techniques 
described above, it will usually be more convenient to take the exponentials of the 
expressions given above so that the sums become products. In many cases such as the 
Ising and Potts models only integers will be involved in the calculations if product 
expressions are used. Rounding errors associated with the usual ‘floating point’ 
representation of real numbers in digital computers can thus be avoided without the 
difficulty of having to work with non-standard representations of rational numbers. 
This property has previously been noticed in algebraic graph theory calculations 
(Biggs 1974, Kim and Enting 1978) but seem to have been used very little, if at all, in 
theoretical physics. 
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